Stability of periodic travelling shallow-water waves determined by Newton’s equation

نویسندگان

  • Sevdzhan Hakkaev
  • Iliya D. Iliev
  • Kiril Kirchev
چکیده

We study the existence and stability of periodic travelling-wave solutions for generalized Benjamin-Bona-Mahony and Camassa-Holm equations. To prove orbital stability, we use the abstract results of Grillakis-Shatah-Strauss and the Floquet theory for periodic eigenvalue problems. Mathematics Subject Classification: 35B10, 35Q35, 35Q53, 35B25, 34C08, 34L40

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The instability of periodic surface gravity waves

Euler’s equations describe the dynamics of gravity waves on the surface of an ideal fluid with arbitrary depth. In this paper, we discuss the stability of periodic travelling wave solutions to the full set of nonlinear equations via a non-local formulation of the water wave problem, modified from that of Ablowitz, Fokas & Musslimani (J. Fluid Mech., vol. 562, 2006, p. 313), restricted to a one-...

متن کامل

A completely integrable particle method for a nonlinear shallow-water wave equation in periodic domains

We propose an algorithm for an asymptotic model of shallow-water wave dynamics in a periodic domain. The algorithm is based on the Hamiltonian structure of the equation and corresponds to a completely integrable particle lattice. In particular, “periodic particles” are introduced in the algorithm for waves travelling through the domain. Each periodic particle in this method travels along a char...

متن کامل

Complete integrable particle methods and the recurrence of initial states for a nonlinear shallow-water wave equation

We propose an algorithm for an asymptotic model of shallow-water wave dynamics in a periodic domain. The algorithm is based on the Hamiltonian structure of the equation and corresponds to a completely integrable particle lattice. In particular, “periodic particles” are introduced in the algorithm for waves travelling through the domain. Each periodic particle in this method travels along a char...

متن کامل

Spectral stability of periodic waves in the generalized reduced Ostrovsky equation

We consider stability of periodic travelling waves in the generalized reduced Ostrovsky equation with respect to co-periodic perturbations. Compared to the recent literature, we give a simple argument that proves spectral stability of all smooth periodic travelling waves independent of the nonlinearity power. The argument is based on the energy convexity and does not use coordinate transformati...

متن کامل

Periodic Travelling Waves of the Short Pulse Equation: Existence and Stability

We construct various periodic travelling wave solutions of the Ostrovsky/HunterSaxton/short pulse equation and its KdV regularized version. For the regularized short pulse model with small Coriolis parameter, we describe a family of periodic travelling waves which are a perturbation of appropriate KdV solitary waves. We show that these waves are spectrally stable. For the short pulse model, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008